Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CATEGORY		COMPONENT COURSE CODE		COURSI	COURSE TITLE		
I	PART - III		CORE ELECTIVE-1	P23MA1E1B	GRAPH THE APPLICA			
Date:	12.11	.2024	/ AN Tim	e: 3 hours	Maximur	n: 75 Marks		
Course Outcome	Bloom's K-level	Q. No.	SEC	<u>CTION – A (</u> 10 X 1 = Answer <u>ALL</u> Quest	•			
CO1	K1	1.	(7, 6, 5, 4, 3, 3, 2) is a) not Graphic	b) graphic c) inc	creasing	d) none		
CO1	K2	2.	In a multiple graph, a) 2	d(u, u) = b)1 c) 0		d)∞		
CO2	K1	3.	Petersen graph is a) Eluerian b) Hami	ltonian c) either (a) (or (b) d) neith	er (a) nor (b)		
CO2	K2	4.	If <i>G</i> is simple with _ a) $\gamma \ge 3$ and $\delta \ge \frac{\gamma}{2}$	then <i>G</i> is Hamil b) $\delta \geq 3$ and $\gamma \geq \frac{\delta}{2}$		d) $\delta \ge \frac{\gamma}{3}$		
CO3	K1	5.	Every 3-regular grap a) loop b) Perfect ma	oh without cut edges atching c) independe		nplete graph		
CO3	K2	6.	If G is then χ' a)Complete		c) bipartite	d) none		
CO4	K1	7.	r(3,3) = a) 5	b) 4	c) 9	d) 6		
CO4	K2	8.	If S is a clique of G that a) G^c		ent set of c) <i>G</i>	$\stackrel{\cdot}{\text{d}}$ K_n		
CO5	K1	9.	Every critical graph a) not connected		c) connected	d) none		
CO5	K2	10.	The length of the she a) Girth b) metric	ortest cycle is called c c) circumferen		atic number		
Course Outcome	Bloom's K-level	Q. No.		CTION – B (5 X 5 = 2 L Questions choosin		r (b)		
CO1	K2	11a.	Define the degree of the degrees of the ve of the graph.	vertex in a graph an ertices of a graph is t	_			
CO1	K2	11b.	Show that $\delta \leq \frac{2E}{\gamma} \leq \Delta$					

CO2	K2	12a.	If G is a tree then prove that $E = \gamma - 1$. (OR)
CO2	K2	12b.	Prove that an edge e of G is a cut edge if and only if e is contained in no cycle of G .
CO3	КЗ	13a.	State and prove Hall's theorem. (OR)
CO3	КЗ	13b.	If G is simple then prove that either $\chi = \Delta$ or $\chi' = \Delta + 1$.
CO4	КЗ	14a.	Prove that $\alpha' + \beta' = \gamma$. (OR)
CO4	КЗ	14b.	Prove that $r(3,5) = 14$.
CO5	K4	15a.	Show that in a critical graph, no vertex cut is a clique. (OR)
CO5	K4	15b.	Prove that if G is simple then $\pi_K(G) = \pi_K(G - e) - \pi_K(G \cdot e)$ for any edge e of G .

Course Outcome	Bloom's K-level	Q. No	SECTION - C (5 X 8 = 40 Marks) Answer ALL Questions choosing either (a) or (b)
CO1	K4	16a.	Define graphic sequence walk, path, cycle. (OR)
CO1	K4	16b.	Prove: A graph <i>G</i> is bipartite if and only if it contains no odd cycles.
CO2	K5	17a.	State and prove Cayley's theorem. (OR)
CO2	K5	17b.	Show that a non-empty connected graph is eulerian if and only if it has no vertices of odd degree.
CO3	K5	18a.	Show that a matching M in G is a maximum matching if and only if G contains no M -augmenting path. (OR)
CO3	K5	18b.	State and prove Tutte's theorem.
CO4	K5	19a.	Show that $r(k,l) \le {k+l-2 \choose k-l}$. (OR)
CO4	K5	19b.	Show that $r(k,k) \ge 2^{k/2}$.
CO5	К6	20a.	State and prove Brook's theorem. (OR)
CO5	К6	20b.	Show that if G is 4-chromatic then G contains a subdivision of k_4 .